A New Catalyst for the Asymmetric Henry Reaction: Synthesis of β -Nitroethanols in High Enantiomeric Excess

James D. White* and Subrata Shaw

Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States

James.white@oregonstate.edu

Received November 5, 2012

A new chiral tetrahydrosalen ligand has been designed and synthesized from *cis*-2,5-diaminobicyclo[2.2.2]octane. The complex generated in situ by the interaction of the ligand with $(CuOTf)_2 \cdot C_6H_5CH_3$ was an efficient catalyst for the asymmetric Henry reaction, producing nitroaldol products in high yield and good stereoselectivity. Henry reactions catalyzed by this tetrahydrosalen-Cu(I) complex led to syntheses of β -adrenergic blocking agents (*S*)-toliprolol, (*S*)-moprolol, and (*S*)-propanolol.

The base-catalyzed reaction of an aldehyde with a nitroalkane ("nitroaldol condensation") that was discovered by Henry more than a century ago¹ continues to attract synthetic interest for its versatility and operational simplicity.² In its general form (eq 1), the nitroaldol or Henry reaction positions hydroxyl and nitro groups in a vicinal relationship that provides a template for acquiring valued chemical entities including pharmaceuticals.³

$$R^1 \xrightarrow{H} O + R^2 \xrightarrow{NO_2} \xrightarrow{\text{base}} R^1 \xrightarrow{OH} R^2 \xrightarrow{NO_2} (1)$$

Introduction of stereoselectivity into the Henry reaction has received much recent attention,⁴ but there remains a need for efficient catalyst systems which deliver the nitroethanol product in high enantiomeric excess with certain substrate classes. We have previously reported the synthesis of a new salen ligand (1) based on the chiral scaffold *cis*-2,5-diaminobicyclo[2.2.2]octane (Figure 1), and we showed that the chromium(II) complex of **1** is an efficient catalyst for the hetero-Diels–Alder reaction of aldehydes with a Danishefsky diene and for the Nozaki–Hiyama–Kishi reaction of allyl bromide with aromatic aldehydes.⁵

ORGANIC LETTERS

2012 Vol. 14, No. 24

6270-6273

Figure 1. Salen ligand based on a *cis* 2,5-diaminobicyclo-[2.2.2]octane scaffold.

It is known that the Henry reaction can be catalyzed by copper(II) salts.^{4g,h,p,x} The stable copper(II)-salen complex 2^5 , prepared by treatment of 1 with copper(II) acetate in methanol (Scheme 1), was therefore investigated as a catalyst for the Henry reaction of *p*-nitrobenzaldehyde

^{(1) (}a) Henry, L. C.R. Acad. Sci. Ser. C 1895, 1265. (b) Henry, L. Bull. Soc. Chim. Fr. 1895, 13, 999.

⁽²⁾ Luzzio, F. A. Tetrahedron 2001, 57, 915.

⁽³⁾ Rosini, G.; Ballini, R. Synthesis 1988, 833.

Scheme 1. Synthesis of Copper(II) Complex (+)-2 and Tetrahydrosalen Ligand (+)-5 From (+)-1

(3) with nitromethane under conditions that were intended to optimize chemical yield and enantioselectivity (Scheme 2). Initial results were not encouraging, however. Although 20 mol % of (R,R) complex 2 in a methanol/dichloromethane solvent pair at elevated temperature was found to give an acceptable yield of (R)-1-(4-nitrophenyl)-2nitroethanol (4), the level of asymmetric induction was poor.

By contrast, reduction of (+)-1 to diamine (+)-5, with sodium borohydride (Scheme 1), followed by complexation with copper(II) triflate led to a more promising outcome in the Henry reaction of aryl aldehydes with nitromethane. First results with *p*-nitrobenzaldehyde (3) and nitromethane using ligand (+)-5 at 20 mol % and copper(II) triflate at 5 mol % as the metal source indicated that while the chemical yield of 4 was acceptable, the background Scheme 2. Asymmetric Henry Reaction Catalyzed by Copper-(II)-Salen Complex (+)-2

reaction leading to racemic **4** overwhelmed asymmetric induction from (+)-**5** (Table 1, entry 1). However, when the toluene complex of copper(I) triflate⁶ was used at 1 mol % with ligand (+)-**5** at 10 mol % in dry methanol (entry 5), a marked increase in the enantiomeric excess of (*R*)-**4** was observed. The optimum reaction temperature was found to be 40 °C. When the same conditions were applied to the Henry reaction of *p*-chlorobenzaldehyde with nitromethane an improved yield and enantiomeric excess of product **6** was observed (Table 1, entry 6); 2,6dichlorobenzaldehyde as a substrate (entry 7) raised these figures further.

Guided by favorable results (entries 5–7) in Table 1, we next examined a broad portfolio of aromatic aldehydes (Table 2, entries 1–13) in their reaction with nitromethane catalyzed by the copper(I) complex of (+)-5. In every case, nitro alcohol 7 was obtained in > 90% enantiomeric excess

Table 1. Asymmetric Henry Reaction of Aromatic Aldehydeswith Nitromethane: Effect of Varying Metal Ion Source,Cu/(+)-5 Ratio, Catalyst Loading, and Reaction Temperature^a

$$Ar \xrightarrow{O} + CH_3NO_2 \xrightarrow{(+)-5, \text{ metal salt}} Ar \xrightarrow{OH} NO_2$$

product 4 or 6

entry	y Ar	ligand loading (mol %)	metal salt (mol %)	temp (°C)	t (h)	yield [%] ^b	ee $[\%]^c$
1	$4\text{-NO}_2\text{C}_6\text{H}_4$	20	$Cu(OTf)_2$ (5)	20	30	4, 68	7
2	$4\text{-NO}_2\text{C}_6\text{H}_4$	10	$Cu(OTf)_2$ (2.5)	20	30	4, 55	28
3^d	$4-\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	10 ($(CuOTf)_2 \cdot C_6 H_5 CH_3$ (5)	20	24	4 , 49	26
4	$4\text{-NO}_2\text{C}_6\text{H}_4$	10 ($(CuOTf)_2 \cdot C_6H_5CH_3$ (2.5)	40	15	4, 85	43
5	$4\text{-NO}_2\text{C}_6\text{H}_4$	10	$(CuOTf)_2 \cdot C_6H_5CH_3$ (1)	40	20	4 , 64	79
6	$4\text{-}\mathrm{CIC}_6\mathrm{H}_4$	10 ($(CuOTf)_2 \cdot C_6H_5CH_3$	40	16	6a , 76	83
7	2,6-CI ₂ C ₆ H	₃ 10 ($(CuOTf)_2 \cdot C_6 H_5 CH_3$	40	20	6b , 89	94
			(-)				

^{*a*} Reactions were carried out on 0.2 mmol scale with 0.6 mL of nitromethane. ^{*b*} Yield of isolated product. ^{*c*} Determined by HPLC using a Daicel Chiralcel AD or OD column. ^{*d*} No molecular sieves added.

^{(4) (}a) Sasai, H.; S-uzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1992, 114, 4418. (b) Sasai, H.; Tokunga, T.; Watanabe, S.; Suzuki, T.; Itoh, N.; Shibasaki, M. J. Org. Chem. 1995, 60, 7388. (c) Arai, T.; Yamada, Y. M. A.; Yamamoto, N.; Sasai, H.; Shibasaki, M. Chem.-Eur. J. 1996, 2, 1368. (d) Davis, A. V.; Driffield, M.; Smith, D. K. Org. Lett. 2001, 3, 3075. (e) Trost, B. M.; Yeh, V. S. C.; Ito, H.; Bremeyer, N. Org. Lett. 2002, 4, 2621. (f) Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed. 2002, 41, 861. (g) Risgard, T.; Gothelf, K. V.; Jorgensen, K. A. Org. Biomol. Chem. 2003, 1, 153. (h) Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003, 125, 12692. (i) Ooi, T.; Doda, K.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 2054. (j) Zhong, Y. W.; Tian, P.; Lin, G. Q. *Tetrahedron: Asymmetry* **2004**, *15*, 771. (k) Borah, J. C.; Gogoi, S.; Boruwa, J.; Kalita, B.; Barua, N. C. *Tetrahedron Lett.* **2004**, *45*, 3689. (l) Zubia, A.; Cossio, F. P.; Morao, L. A.; Rieumont, M.; Lopez, X. Am. Chem. Soc. 2004, 126, 5243. (m) Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem., Int. Ed. 2004, 43, 5442. (n) Palomo, C. Oiarbide, M.; Laso, A. Angew. Chem., Int. Ed. 2005, 44, 3881. (o) Li, H.; Wang, B.; Deng, L. J. Am. Chem. Soc. 2006, 128, 732. (p) Arai, T.; Watanabe, M.; Yanagisawa, A. Org. Lett. 2007, 9, 3595. (q) Gruber-Khadjawi, M.; Purkharthofer, T.; Skranc, W.; Griengl, H. Adv. Synth. Catal. 2007, 349, 1445. (r) Handa, S.; Nagawa, S.; Sohtome, Y.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2008, 47, 3230. (s) Toussaint, A.; Pfaltz, A. Eur. J. Chem. 2008, 4591. (t) Kim, H. Y.; Oh, K. Org. Lett. 2009, 11, 5682. (u) Breuning, M.; Hein, D.; Steiner, M.; Gessner, V. H.; Strohmann, C. Chem.-Eur. J. 2009, 15, 12764. (v) Ji, Y. Q.; Qi, G.; Judeh, Z. M. A. Eur. J. Org. Chem. 2011, 4892. (w) Jin, W.; Li, X.; Wan, B. J. Org. Chem. 2011, 76, 484. (x) Chougnet, A.; Zhang, G.; Liu, K.; Hausinger, D.; Kagi, A.; Allmendinger, T.; Woggon, W. D. Adv. Synth. Catal. 2011, 353, 1797.

⁽⁵⁾ White, J. D.; Shaw, S. Org. Lett. 2011, 13, 2488.

Table 2. Asymmetric Synthesis of β -Nitro Alchohols under Optimized Conditions: Structural Effects on Yield and Enantioselectivity^{*a*}

R	+ CH ₃ NO ₂	(CuOTf) ₂ .C ₆ H ₅ CH ₃ (1 m (+)- 5 (10 mol %) 4 Å MS, MeOH, 40 °	ol %) 		10 ₂
				produ	ıct 7
entry		R	<i>t</i> (h)	yield [%] ^b	ее [%] ^с

1	Ph	20	7a , 90	92
2	$3-CH_3C_6H_4$	24	7b , 95	96
3	$2-MeOC_6H_4$	60	7c , 81	91
4	$3-MeOC_6H_4$	18	7d , 94	96
5	$4-CF_3C_6H_4$	24	7e , 96	96
6	$2-(OH)C_6H_4$	24	7f , 97	92
7	$3,5-(OMe)_2C_6H_3$	22	7g , 93	96
8	$2,4-(NO_2)_2C_6H_3$	12	7h , 93	95
9	$3-(4-MeOC_7H_6O)-4-(NO_2)C_6H_3$	24	7i , 99	95
10	$2-(OH)-3-(Br)-5-(Me_3C)C_6H_2$	24	7j , 87	98
11	1-naphthyl	18	7k , 98	93
12	2-furyl	24	71 , 87	94
13	3-furyl	20	7m , 98	95
14	cyclohexyl	42	7n , 90	94
15	Me_3C	51	70 , 89	95
16	$CH_3CH=C(CH_3)(E)$	18	7p , 83	93
17	$PhCH=C(CH_{2})(E)$	48	7a . 95	97

^{*a*} Reactions were carried out on 0.2 mmol scale with 0.6 mL of nitromethane. ^{*b*} Yield is based on allyl ethers 11-13. ^{*c*} Determined by HPLC using a Daicel Chiralcel OD column.

and in good yield. Aliphatic aldehydes (entries 14–15) as well as α,β -unsaturated aldehydes (entries 16–17) also gave a high yield and enantiomeric excess of 7.

The asymmetric Henry reaction is well suited to preparation of the vicinal amino alcohol motif that characterizes blocking agents of the β -adrenergic receptor such as toliprolol (8),⁷ moprolol (9),⁸ and propanolol (10).⁹ Each of these drugs features a 1-aryloxy-3-isopropylamino-2-propanol template with the active enantiomer having an (*S*) configuration (Figure 2).

Figure 2. β -Adrenergic receptor blocking agents.

(6) Dines, M. B.; Bird, P. H. J. Chem. Soc., Chem. Commun. 1973, 12.
(7) Howe, R.; Rao, B. S. J. Med. Chem. 1968, 11, 1118.

Access to these structures began with oxidative cleavage of allyl aryl ethers $11-13^{10}$ to give unstable aldehydes 14-16 which were reacted with nitromethane under the conditions specified in Table 2 (Scheme 3). The results of reactions of 14-16 with nitromethane are shown in Table 3 and confirm that ligand 5 is an efficient catalyst for conversion of these aldehydes to nitro alcohols. Catalytic hydrogenation of 17-19 led quantitatively to the corresponding amino alcohols which were condensed in situ with acetone. A second catalytic hydrogenation produced $8, 9, and 10.^{11}$ In this manner, a simple sequence in which the final three steps are carried out in a single pot leads from inexpensive starting materials (*m*-cresol, guaiacol, and 1-naphthol) to important commercial drugs in good overall yield and high enantiopurity.

Scheme 3. Syntheses of (*S*)-Toliprolol (8), (*S*)-Moprolol (9), and (*S*)-Propanolol (10)

Table 3. Asymmetric Henry Reaction of Aldehydes 14-16 with Nitromethane Catalyzed by $(+)-5^a$

entry	aldehyde (Ar)	product	yield $[\%]^b$	ee $[\%]^c$
1	$14 (3-CH_3C_6H_4)$	17	90	96
2	$15 (2-CH_3OC_6H_4)$	18	93	94
3	16 (1-naphthyl)	19	90	97

^{*a*} Reactions were carried out on 0.2 mmol scale with 0.6 mL of nitromethane. ^{*b*} Yield is based on allyl ethers **11–13**. ^{*c*} Determined by HPLC using a Daicel Chiralcel OD column.

Diastereoselectivity associated with higher order nitroalkanes in the asymmetric Henry reaction has been studied by Shibasaki^{4b,r} and by Jorgensen.^{4g} In our hands, reaction of benzaldehyde and 1-naphthaldehyde with nitropropane in the presence of (+)-5 and a copper(I) triflate toluene

⁽⁸⁾ Lunsford, C. D.; Mays, R. P.; Richman, J. A.; Murphey, R. S. J. Am. Chem. Soc. **1960**, *82*, 1166.

⁽⁹⁾ Dukes, M.; Smith, L. H. J. Med. Chem. 1971, 14, 326.

⁽¹⁰⁾ Allyl ethers 11-13 were obtained by reaction of the parent phenol with allyl bromide and potassium carbonate in acetone at rt.

⁽¹¹⁾ Sasai, H.; Itoh, N.; Suzuki, T.; Shibasaki, M. *Tetrahedron Lett.* **1993**, *34*, 855.

Table 4. Asymmetric Addition of 1-Nitropropane to Benzaldehyde and 1-Naphthaldehyde Catalyzed by (+)-5/(CuOTf)₂·C₆H₅CH₃^{*a*}

entry			product 21			
	R	<i>t</i> (h)	dr syn/anti ^b	yield [%] ^c	ee $[\%]^d$	
$\frac{1}{2}$	Ph 1-naphthyl	24 28	>20:1 >50:1	21a , 96 21b , 93	97 98	

^{*a*} Reactions were carried out on 0.2 mmol scale with 0.6 mL of nitropropane. ^{*b*} Determined by ¹H NMR analysis. ^{*c*} Combined yields of *syn* and *anti* isomers. ^{*d*} Determined by HPLC using a Daicel Chiralcel OD-H or AS-H column.

complex under the conditions specified in Table 2 gave a *syn/anti* ratio strongly favoring the *syn* product **21** which was formed in high enantiomeric excess (Table 4).

It is clear from the results in Tables 2 and 3 that there is a strong preference for (1R, 2R, 4R, 5R) ligand (+)-5 to give nitroaldol products 7 of an (R) configuration in the reaction of aldehvdes with nitromethane. This stipulates that attack by nitromethane occurs predominantly at the si face of the carbonyl group; a transition state rationalizing this outcome is proposed in Figure 3. In this model, reactants are coordinated to copper(I) complex 20 in a quadrant under the bicyclic scaffold (right, front) with C-C bond formation taking place from the less sterically encumbered direction.¹² It is likely that organization of transition state 20 is assisted by a N-H hydrogen bond with the nitronate since complex (+)-2 in which this hydrogen bond is absent leads to lower enantioselectivity. The results in Table 4 imply that the copper complexed nitronate of nitropropane in transition state 22 has a (Z) configuration with attack occurring at the si face of the aldehyde carbonyl as shown in Figure 3.

A catalytic cycle that would incorporate transition states **20** and **22** is proposed in Scheme 4. Initial ligand exchange of tetrahydrosalen (+)-5 for toluene would give copper(I) triflate complex **23**. Progression of **23** via copper(I) complexes **24** and **25** would complete the catalytic cycle while generating **7** or **21**.

Figure 3. Proposed transition state for the asymmetric henry reaction of aldehydes with nitromethane and 1-nitropropane catalyzed by a (+)-5/(CuOTf)₂·C₆H₅CH₃ complex.

Scheme 4. Proposed Catalytic Cycle for the Formation of 7 and 21

In summary, an efficient catalyst based on a copper(I) complex of tetrahydrosalen (+)-5 has been developed for the asymmetric Henry reaction. It was shown that high yields, diastereoselectivity, and enantioselectivity of β -nitro alcohols can be obtained with this catalyst.

Acknowledgment. We are grateful to Oregon State University Colleges of Pharmacy and Science for funds to purchase a 500 MHz NMR spectrometer.

Supporting Information Available. Experimental procedures and characterization data for new compounds. This material is available free of charge via Internet at http://pubs.acs.org.

⁽¹²⁾ A 180° rotation of the aldehyde in **20** (which would lead to an *re* face attack by nitromethane) is disfavored by a steric clash of the aldehyde hydrogen with a *tert*-butyl substituent on the opposing benzenoid ring of the salen ligand.

The authors declare no competing financial interest.